public final class DataUtils
extends java.lang.Object
Modifier and Type | Method and Description |
---|---|
static double[] |
arrayFromString(java.lang.String s) |
static double[] |
arrayFromString(java.lang.String s,
java.lang.String delemiter) |
static double[] |
arrayFromString(java.lang.String s,
java.lang.String delemiter,
boolean trim) |
static double[] |
average(double[] a,
int processes) |
static double[] |
combineLabelAndData(double[] x,
double y)
This method combines the label and features in the data point
This can be use to submit a single message in the stream
|
static BinaryBatchModel |
generateBinaryModel(double[][] xy,
int iterations,
double alpha)
Deprecated.
method
|
static double[][] |
generateDummyDataPoints(int samples,
int features)
This method provides a dummy data set for batch based computations
User can say the number of samples and feature size and this function
generates a data set with labels included per data sample
|
static double[][] |
getDataObjectToDoubleArray(DataObject<java.lang.Object> dataPointsObject1) |
static double[][] |
getDataPointsFromDataObject(java.lang.Object object)
This method is used to convert the input data obtained from a different SourceTask
|
static double[][] |
getWeightVectorFromDataObject(java.lang.Object object)
This method is used to convert the input data obtained from a different SourceTask
|
static double[] |
seedDoubleArray(int features)
This method populates the array with a Gaussian Distribution
|
static BinaryBatchModel |
updateModelData(BinaryBatchModel binaryBatchModel,
double[][] xy)
This method updates an existing BinaryBatchModel with the data points
|
public static double[] seedDoubleArray(int features)
features
- : number of features in a data pointpublic static double[] combineLabelAndData(double[] x, double y)
x
- data points with d featuresy
- labelpublic static double[][] generateDummyDataPoints(int samples, int features)
samples
- number of data points = Nfeatures
- number of features in a data point = D@Deprecated public static BinaryBatchModel generateBinaryModel(double[][] xy, int iterations, double alpha)
xy
- data points with {y_i, x_i_1, .... x_i_d}iterations
- number of iterationsalpha
- learning ratepublic static BinaryBatchModel updateModelData(BinaryBatchModel binaryBatchModel, double[][] xy)
binaryBatchModel
- Binary Batch Modelxy
- data points with {y_i, x_i_1, .... x_i_d}public static double[][] getDataPointsFromDataObject(java.lang.Object object)
public static double[][] getWeightVectorFromDataObject(java.lang.Object object)
public static double[][] getDataObjectToDoubleArray(DataObject<java.lang.Object> dataPointsObject1)
public static double[] arrayFromString(java.lang.String s)
public static double[] arrayFromString(java.lang.String s, java.lang.String delemiter)
public static double[] arrayFromString(java.lang.String s, java.lang.String delemiter, boolean trim)
public static double[] average(double[] a, int processes)